Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
Int J Mol Sci ; 23(16)2022 Aug 12.
Article in English | MEDLINE | ID: covidwho-2023734

ABSTRACT

Heavy metal ions can disrupt biological functions via multiple molecular mechanisms, including inhibition of enzymes. We investigate the interactions of human papain-like cysteine endopeptidases cathepsins L, K, and S with gallium and cerium ions, which are associated with medical applications. We compare these results with zinc and lead, which are known to inhibit thiol enzymes. We show that Ga3+, Ce3+, and Ce4+ ions inhibit all tested peptidases with inhibition constants in the low micromolar range (between 0.5 µM and 10 µM) which is comparable to Zn2+ ions, whereas inhibition constants of Pb2+ ions are one order of magnitude higher (30 µM to 150 µM). All tested ions are linear specific inhibitors of cathepsin L, but cathepsins K and S are inhibited by Ga3+, Ce3+, and Ce4+ ions via hyperbolic inhibition mechanisms. This indicates a mode of interaction different from that of Zn2+ and Pb2+ ions, which act as linear specific inhibitors of all peptidases. All ions also inhibit the degradation of insoluble elastin, which is a common target of these peptidases in various inflammatory diseases. Our results suggest that these ions and their compounds have the potential to be used as cysteine cathepsin inhibitors in vitro and possibly in vivo.


Subject(s)
Cerium , Gallium , Cathepsin K/metabolism , Cathepsins/metabolism , Cysteine , Cysteine Proteinase Inhibitors/metabolism , Cysteine Proteinase Inhibitors/pharmacology , Endopeptidases/metabolism , Humans , Ions , Kinetics , Lead
2.
J Enzyme Inhib Med Chem ; 37(1): 2158-2168, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1978145

ABSTRACT

Zinc pyrithione (1a), together with its analogues 1b-h and ruthenium pyrithione complex 2a, were synthesised and evaluated for the stability in biologically relevant media and anti-SARS-CoV-2 activity. Zinc pyrithione revealed potent in vitro inhibition of cathepsin L (IC50=1.88 ± 0.49 µM) and PLPro (IC50=0.50 ± 0.07 µM), enzymes involved in SARS-CoV-2 entry and replication, respectively, as well as antiviral entry and replication properties in an ex vivo system derived from primary human lung tissue. Zinc complexes 1b-h expressed comparable in vitro inhibition. On the contrary, ruthenium complex 2a and the ligand pyrithione a itself expressed poor inhibition in mentioned assays, indicating the importance of the selection of metal core and structure of metal complex for antiviral activity. Safe, effective, and preferably oral at-home therapeutics for COVID-19 are needed and as such zinc pyrithione, which is also commercially available, could be considered as a potential therapeutic agent against SARS-CoV-2.


Subject(s)
COVID-19 Drug Treatment , Ruthenium , Antiviral Agents/pharmacology , Cathepsin L , Humans , Organometallic Compounds , Pyridines , SARS-CoV-2
3.
FASEB J ; 36(3): e22199, 2022 03.
Article in English | MEDLINE | ID: covidwho-1684809

ABSTRACT

Spike trimer plays a key role in SARS-CoV-2 infection and vaccine development. It consists of a globular head and a flexible stalk domain that anchors the protein into the viral membrane. While the head domain has been extensively studied, the properties of the adjoining stalk are poorly understood. Here, we characterize the coiled-coil formation and thermodynamic stability of the stalk domain and its segments. We find that the N-terminal segment of the stalk does not form coiled-coils and remains disordered in solution. The C-terminal stalk segment forms a trimeric coiled-coil in solution, which becomes significantly stabilized in the context of the full-length stalk. Its crystal structure reveals a novel antiparallel tetramer coiled-coil with an unusual combination of a-d and e-a-d hydrophobic core packing. Structural analysis shows that a subset of hydrophobic residues stabilizes different coiled-coil structures: trimer, tetramer, and heterohexamer, underscoring a highly polymorphic nature of the SARS-CoV-2 stalk sequence.


Subject(s)
COVID-19/virology , Models, Molecular , Protein Domains , SARS-CoV-2/chemistry , Spike Glycoprotein, Coronavirus/chemistry , Amino Acid Sequence , Crystallization , Crystallography, X-Ray , Humans , Hydrophobic and Hydrophilic Interactions , Protein Stability , Protein Structure, Secondary , Scattering, Small Angle , Temperature , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL